
CONSIDERING OBJECT ORIENTED TECHNOLOGY IN AVIATION
APPLICATIONS

Kelly J. Hayhurst, C. Michael Holloway, NASA Langley Research Center, Hampton, Virginia

Abstract
Few developers of commercial aviation

software products are using object-oriented
technology (OOT), despite its popularity in some
other industries. Safety concerns about using OOT
in critical applications, uncertainty about how to
comply with regulatory requirements, and basic
conservatism within the aviation community have
been factors behind this caution.

The Federal Aviation Administration (FAA)
and the National Aeronautics and Space
Administration (NASA) have sponsored research to
investigate and workshops to discuss safety and
certification concerns about OOT and to develop
recommendations for safe use. Two Object
Oriented Technology in Aviation (OOTiA)
workshops have been held and numerous issues and
comments about the effect of OOT features and
languages have been collected. This paper gives a
high level overview of the OOTiA project, and
discusses selected specific results from the March
2003 workshop. In particular, results in the form of
questions to consider before making the decision to
use OOT are presented.

Introduction
There is an increasing desire among aviation

software developers to use object-oriented
technology (OOT), including object oriented
modeling, design, programming, and analysis, in
the development of aviation applications. These
desires are fueled, at least in part, by claims from
OOT supporters, such as object orientation “is a
more natural form of problem solution and that it
results in heavier reuse than its traditional
alternatives” [1]. Promises of improved reuse are
especially appealing to vendors who build product
families for a specialized market, such as aviation,
over a long period of time.

Despite claimed cost and quality benefits, few
civil aviation applications, especially in airborne
systems, have been implemented using OOT.

Safety concerns coupled with uncertainty about
how to comply with certification requirements have
been key obstacles to widespread use of OOT in
digital avionics systems.

Compliance with the objectives of RTCA/DO-
178B, Software Considerations in Airborne Systems
and Equipment Certification [2] is the primary
means of securing approval of software for use in
civil transport aviation products. Similar objectives
apply to software used in communications,
navigation, and surveillance applications for air
traffic management [3]. Neither DO-178B nor DO-
278, however, explicitly mentions OOT. Object-
oriented (OO) programs that have sought regulatory
approval have been required to formulate issue
papers to respond to certification concerns.

When DO-178B was published in 1992,
structured programming was the predominant
technique for organizing and coding computer
programs in aviation applications. Although the
guidance in DO-178B does not specify a particular
development approach, the objectives were
formulated largely from the perspective of
structured programming. Both developers and
certification authorities have raised questions about
how the DO-178B objectives are to be satisfied in a
project using OOT. Some of these issues are
documented in position papers [4, 5] written by the
Certification Authorities Software Team (CAST),
which helps harmonize software related policy and
guidance among international certification
authorities.

In an effort to resolve these issues, and to
ensure that all the important questions are both
asked and answered, the Federal Aviation
Administration (FAA) enlisted the National
Aeronautics and Space Administration (NASA) to
help start the Object Oriented Technology in
Aviation (OOTiA) project. This project is
sponsoring research and conducting workshops
designed to develop recommendations for safe use
of OOT in compliance with DO-178B.

The OOTiA project was based initially in large
part on work conducted by the Aerospace Vehicle
Systems Institute (AVSI). AVSI is a research
consortium for the aerospace industry working to
improve and to reduce the costs of complex
subsystems in aircraft. As part of this consortium,
Boeing, Honeywell, Goodrich, and Rockwell
Collins collaborated on an AVSI project titled
Certification Issues for Embedded Object-Oriented
Software, the goal of which was to mitigate the risk
that individual projects face when certifying
systems with OO software. The AVSI project
proposed a number of guidelines for producing
object-oriented software in compliance with DO-
178B [6].

In 2001, a committee including representatives
from the AVSI project, FAA, and NASA, was
formed for the purpose of extending the AVSI work
for the benefit of the entire aviation software
community. This committee developed the
following approach for accomplishing this purpose:

• Set up a web site dedicated to collecting
data on safety and certification concerns

• Hold public workshops to which the
aviation software community would be
invited to discuss concerns

• Document each key concern raised either
through the web site or the workshops

• Adapt the AVSI guidelines to address all
of the concerns believed by the
committee to be valid

• Produce a handbook.

This paper does not attempt to describe fully
all of the OOTiA project results to date. Instead,
the paper gives only a brief overview of the project,
and then discusses in detail the results from one
particular session at the March 2003 workshop
dedicated to scrutinizing the decision to use OOT.

OOTiA Project Overview
On September 14, 2001, the OOTiA web site

http://shemesh.larc.nasa.gov/foot/ was launched by
NASA Langley Research Center, and the aviation
software community was invited by email1 to

1 The email distribution list comprised over 900 individuals
who have expressed an interest in or attended software related
functions sponsored by the FAA.

participate in a dialogue about OOT. Individuals
could participate by submitting comments,
concerns, or issues about OOT to an issue list kept
on the OOTiA web site, by attending public
workshops organized by the OOTiA committee,
and by reviewing products from this effort.

To date, 96 separate concerns2 about various
aspects of OOT have been collected. The web site
initially requested that each submittal include a
topic, a statement of the concern, and a proposed
solution (if known). Neither individual nor
company names were recorded with the submittals.
No specific guidance was given regarding what
could or could not be submitted. Later updates of
the web site simply requested that concerns be
emailed to a point of contact at NASA Langley.

Each submittal through the web site is added to
a list titled “Issues and Comments about Object
Oriented Technology in Aviation.” This issue list is
posted on the web site and updated as new issues
are submitted. Every entry that is submitted is
added to the list exactly as it is submitted; that is,
entries to the list are not edited. Inclusion on the
list does not imply that the concern is valid, nor
does it imply that the concern is considered
important by the OOTiA committee.

Considerable overlap and similarities are
evident when reviewing the entries in the issue list.
The OOTiA committee originally determined that
the following eight topics adequately described
most of the issue list: single inheritance, multiple
inheritance, reuse and dead/deactivated code, tools,
templates, overloading, type conversion, and
inlining. Draft papers were written for each of
these topics; these papers drew heavily from the
original AVSI documents.

In April 2002, a public workshop was held to
introduce the OOTiA project, to discuss the draft
papers, and to provide an opportunity for people to
raise additional concerns about OOT. After this
workshop, the individual draft papers were revised
and collated into a single document: “Handbook for
Object Oriented Technology in Aviation.” Also, a
ninth topic, traceability, was added, and a paper on
the topic included in the draft handbook.

2 There are actually 99 entries to the list, but 3 of them are
duplicates.

The draft handbook served as the basis for
discussion at a second public workshop3, held in
March 2003. Most of the workshop was devoted to
individual sessions on specific chapters of the
handbook; however, at the request of NASA, a
session titled, “Beyond the Handbook,” was also
held. Whereas the handbook provides guidelines
for how to use OOT, assuming that the decision to
use OOT has already been made, this session
provided participants with an opportunity to discuss
the questions that should be answered before the
decision to use OOT is made. The remainder of
this paper describes the results from this session.

Beyond the Handbook
At OOTiA Workshop 2, participants in the

“Beyond the Handbook” session openly discussed
ideas and produced a list of fifty-one questions
related to making a decision about whether to use
OOT. At the end of the brainstorming session,
these questions were reviewed and then grouped
under five high-level questions that should be
answered before a decision is made. The rest of
this section discusses each of these five questions,
and the associated issues.

Reality of Benefits
The first question that should be asked and

answered is

(1) What are the benefits of OOT compared with
current or alternative approaches? And, what
evidence exists to support claimed benefits of
better, cheaper, faster4, safer, more reliable,
more maintainable, etc.?

OOT has become a popular software
development approach within many non-safety-
critical industries. OOT is promoted as a
technology that allows efficient development of
complex systems using reusable modules. Like
most new technologies, though, new software
technologies often are accompanied by exaggerated

3 Results of the OOTiA workshops are available at
http://shemesh.larc.nasa.gov/foot/
4 As an example of these claims, consider a recent Object
Management Group (OMG) web cast presentation: “Build IT
Better, Cheaper, Faster” available at http://www.omg.org/
modeling-webcast.htm. Visited on 28 July 2003.

claims. OOT is no exception. According to Glass
[1], two phenomena typically accompany such
claims: “Once the concepts are more thoroughly
understood, the benefits turn out to be far more
modest than claimed,” and “That transition from
excessive claims to modest benefits has seldom
been accomplished with the aid of evaluative
research.” That is, practitioners eventually
recognize the modesty of the benefits on their own.

Within a group of aviation software engineers,
it is not surprising that questions were raised about
evidence to support or deny claims. Participants in
this session were particularly concerned about
finding evidence to support extrapolating the
advantages claimed for OOT (even if they are real)
in non-safety critical systems to safety-critical
systems. Because OOT has been around for a
relatively long time, one would think there would
be an abundance of evidence to promote thorough
understanding of OOT benefits. There is an
abundance of material, but how much of it qualifies
as evidence is debatable.

A quick search of the web for lessons learned
and metrics for OOT will net literally thousands of
references, from short experience reports to entire
books devoted to lessons learned and metrics. A
web search for information on empirical studies
similarly will yield thousands of references.
Studies can be found that support the claimed
benefits, such as Basili’s results showing reduced
defect density and rework with OOT [7], while
other studies demonstrate potential problems such
as complexity and maintenance problems with the
unconstrained use of inheritance [8]. Few empirical
studies, however, compare the effectiveness of
different software engineering methods, such as
comparing OOT to structured programming.

Large-scale empirical studies of software
development methods that might provide
quantitative assessments are notoriously difficult
and expensive. “It costs a lot of money and effort
to do controlled experiments, and that is too high a
price for most researchers equipped to do such
studies, especially in the world of large-scale
software” [9]. There are two studies, however,
relevant to making the decision about OOT that are
worth noting. In a 1994 study [10], Vessey and
Conger compared the performance of three different
development methods: structured programming,

OO, and Jackson System Development [11]. The
results of the study showed that structured methods
were easier to apply, at least by novices, than OO
methods. A later study by Moynihan showed that
functional decomposition, compared with OOT,
was easier to understand and enhanced
communication between client and developer about
requirements [12].

Unfortunately, most empirical studies are open
to criticism, both about internal validity (did the
experimental treatments really make a difference?)
and external validity (to what populations and
settings may the results be generalized?) [13]. On
the whole, “there is no simple answer regarding the
use and performance of OO technologies” [14].
Nonetheless, developers should carefully examine
the evidence regarding OOT to better understand
potential benefits and risks. If Glass is right, this
careful examination should be an adequate
substitution for empirical studies.

Project Characteristics
The second important question is

(2) What project characteristics are important with
respect to OOT?

Various attributes of a project may help
determine whether OOT is an appropriate choice.
Some of these attributes are conventional metrics
specific to the software product; for example, the
size, criticality, and complexity of the software.
Other product-specific attributes include the
maturity of the software requirements, and the
applicability of OOT to the specific problem
domain. Concerns were discussed regarding the
appropriateness of OOT for all problem domains.

Other attributes of interest relate to the long-
term plans for the product. Important
considerations here include whether the software is
a new product or part of a product family. This
would impact upgrade and maintenance
requirements. These factors are important when
weighing the potential benefits of reuse that OOT
may offer.

OOT Specific Resources
Another question that should be asked and

answered is

(3) What project resources, specific to OOT, are
needed?

Once the project characteristics are known, it
is important to evaluate resources specific for
implementing OOT. Resources include those
relevant to personnel who develop and approve the
software product, and those relevant to managing
processes and procedures for development and
approval.

Personnel resources include OOT-specific
training and experience, both at the individual level
(such as the software developers and quality
assurance personnel) and the corporate level. This
includes training and experience with OO methods
for modeling, design, analysis and testing, and with
OO tools. Note that training and experience is a
concern for regulators also, including Designated
Engineering Representatives (DERs) within the
company and certification authorities responsible
for the software approval on the project being
reviewed.

Administrative resources include industry
standards for OOT, such as those associated with
the Object Management Group (OMG) standard for
object-oriented modeling with the Unified
Modeling Language (UML) [15] and standards for
OO source code languages (for example, Ada95,
Java, and C++). Other important standards include
internal process standards that define life cycle
activities and data associated with OOT and how
those map to activities and data specified in DO-
178B.

OO tools are another important resource to
consider. Some OO tools introduce new levels of
abstraction, such as the visual model level, that may
not directly correspond to abstraction levels (high-
or low-level requirements or design) in DO-178B.
Factors to consider here include compatibility of
new OO tools with existing tools, notations, and
processes; configuration management; and
qualification costs.

The project characteristics together with the
OOT specific resources within a company will
influence the level of involvement, or degree of
oversight, that the FAA has with a project. This is a
non-trivial consideration with respect to both time
and cost. The level of FAA involvement will
dictate the number of software reviews, the stages

of involvement, and the nature of the review [16].
This level of regulatory involvement is closely
related to the fourth of the high-level questions
raised at the workshop.

Regulatory Guidance
The fourth question is

(4) How should regulatory guidance, including
DO-178B and the OOTiA handbook, be applied
in a practical project?

This question is really an abstraction of two
more specific questions:

• Are all of the objectives in DO-178B
compatible with OOT?

• How should the handbook be applied to a
practical project, and is the handbook
adequate?

As mentioned previously, the FAA is
sponsoring the development of the OOTiA
handbook to provide information specific to
meeting the DO-178B objectives when using OOT.
Some participants in the brainstorming session
argued that the existing guidance in DO-178B is
sufficient to accommodate approval of an OO
program. Some questioned the wisdom of
generating an OOT-specific handbook, and
wondered whether that implied the need for
additional method-specific handbooks. Other
participants, including some regulators, however,
argued in favor of the benefits that additional
clarification and guidelines might provide in the
short term.

The handbook is not intended to be official
FAA policy or guidance [17], but the handbook will
almost certainly influence the approval process for
an OO program. The handbook does not eliminate
the need for compliance with DO-178B, but instead
provides guidelines for how to use OOT to comply
with the DO-178B objectives. A significant portion
of the handbook is devoted to patterns intended to
ensure this compliance.

If the handbook is to be used effectively by
developers and regulators, then it must provide
clear guidelines. Clear communication of
regulatory requirements, among regulators and
between regulators and software developers, has

been a perpetual problem for aviation software
development [18]. Regulators and software
developers must both understand the requirements
the system must satisfy for it to be approved, and
how the system will be shown to satisfy these
requirements [19]. Misunderstandings can result in
substantial cost and schedule problems.

Technical Challenges
The final, and perhaps most difficult, question

that should be asked and answered by anyone
considering using OOT is

(5) What are the technical challenges in applying
OOT to ensure the appropriate level of integrity
required for the project?

Specific questions raised in the session
concerned how well the essential elements of
software engineering can be done using OOT to
ensure the appropriate level of integrity. Most of
the questions within this grouping were about
requirements, verification, or safety.

Requirements
Several questions asked whether OOT is the

correct approach for requirements development and
implementation. In particular, questions were
raised about the effectiveness and appropriateness
of the OO approach to requirements development,
which is based on use cases. The discussion
involved the difference between the functional
decomposition (or structured programming)
approach and object-orientation.

With functional decomposition, the typical
programming unit is some form of subprogram,
such as a function, subroutine, or procedure. Each
subprogram typically performs a single specific
function, where good programming practice calls
for maximizing functional cohesion within a
subprogram and minimizing coupling between
subprograms. Applications are built by sequencing
these functional building blocks—“first do this,
then do that.” Verification, in turn, starts with the
functionality of an individual subprogram and
works its way up by testing increasing levels of
functionality.

In contrast to functional decomposition, OOT
focuses on objects and the operations performed by
or to those objects. In an OO program, a class,

which is a set of objects that share a common
structure and a common behavior, is the structural
element most comparable to a subprogram.
Operations related to a given functional requirement
often are distributed among objects associated with
different classes.

The fundamental goal of the approval process,
as guided by the Federal Aviation Regulations, is to
provide assurance of the intended functionality and
provide assurance that there is no unintended
functionality. DO-178B does not refer specifically
to subprograms or functional units, but it does
organize guidance for development and verification
around the decomposition of requirements from
high-level requirements to low-level requirements
to source code. This seems reasonable since the
system level requirements, which are the source of
the high-level software requirements, are written by
and large from a functional perspective. Many of
the development and verification objectives in
Annex A of DO-178B are specific to high or low
level requirements and code.

Typically, requirements for OO systems are
developed with use cases, scenarios, and various
diagrams such as class, object, and activity
diagrams. Determining how to map these modeling
components, and their subsequent refinements, onto
the DO-178B objectives was thought by session
participants to be difficult. Some participants
questioned whether such an approach is even
appropriate for safety-critical applications.
Requirements definition by any method is a
significant challenge to developing a correct and
safe system [20]. Developers should consider
whether OOT makes this challenge more difficult.

Verification
In addition to the questions raised about the

suitability of OOT for requirements development, a
similar number of questions were raised about
verification. The questions about verification are
not unrelated to the concerns raised about
requirements. According to Alexander, “object
oriented programs are generally more complex than
their procedural counterparts. This added
complexity results from inheritance, polymorphism,
and the complex data interactions tied to their use.
Although these features provide power and
flexibility, they increase complexity and require

more testing” [21]. Many in the brainstorming
session echoed this sentiment.

Several of the questions discussed in the
session sought to explore the extent that OO
software can be verified:

Can we analyze OO software?

Can we adequately test OO software?

Can we determine the error cases unique to
OOT?

Other questions focused on more specific
aspects of verification, especially analysis issues
such as source to object code traceability, and
control and data flow analysis. Several participants
in the session argued for the application of static
analysis and formal methods.

With respect to verification, many participants
acknowledged the need for additional research to
better understand error classes that are unique to
OOT, such as research by Offutt [22], and to better
understand the extent that existing methods are
adequate for verifying OOT.

Safety
The final technical challenge mentioned in the

questions concerns the ability to conduct system
and software safety assessment. Participants
discussed whether system and safety assessments
can be easily and accurately derived from an OO
program. Current safety analysis is often based on
determining that a function, as implemented, is both
correct and safe. OOT complicates this analysis
because the operations related to a function can be
widely distributed throughout the objects, making
the function difficult to trace.

Workshop participants are not alone in
questioning safety analysis on OO systems. In a
related discussion on the safety-critical mailing list,
participants discussed the importance of a
functional perspective to safety analysis. In the
mailing list discussion, Nancy Leveson argued that
engineers find that functional decomposition is a
more natural approach to the design of control
systems, and “That naturalness translates into easier
to understand and review, easier to design without
errors, easier to analyze to determine whether the
system does what the engineer want and does it
safely” [23]. Others suggested design approaches

in OOT to enhance the ability to do the safety
analysis.

Even though safety analysis is not part of the
life cycle activities specified in DO-178B, the effect
of OO design and implementation on safety
analysis should be carefully considered.

As noted in [4], “Developers should carefully
weigh their program needs with the benefits and
risks of OOT.” This includes examining the
evidence relevant to the benefits of OOT, project
characteristics and resources, and the technical
challenges.

Summary
Object-oriented technology is immensely

popular within certain segments of the software
community, but popularity does not guarantee
propriety, especially for safety-critical systems. An
intelligent decision about whether to use OOT must
be based on answering specific questions about
OOT’s propriety for particular applications and
levels of integrity. This paper has presented some
of the questions proposed by members of the
aviation software community as important to ask
before using OOT. Only if each of these questions
is answered satisfactorily should an aviation
software developer commit to using OOT. If this
decision is made, then the OOTiA handbook, once
it is completed, will provide guidelines to assist
developers in obtaining approval from certification
authorities for OOT software.

Acknowledgement
The questions and concerns raised in this paper

were taken from the results of the “Beyond the
Handbook” brainstorming session held at the
OOTiA Workshop 2, in March 2003. We thank the
session participants for their candor, insight, and
diligence in raising and discussing these questions.

References
[1] Glass, Robert L, May/June 2002, “The
Naturalness of Object Orientation: Beating a Dead
Horse?” IEEE Software, pp. 103-104.

[2] RTCA, Inc., December 1992, Software
Considerations in Airborne Systems and Equipment
Certification, RTCA/DO-178B, Washington, D. C.

[3] RTCA, Inc., 5 March 2002, Guidelines for
Communication, Navigation, Surveillance, and Air
Traffic Management (CNS/ATM) Systems
Software Integrity Assurance, RTCA/DO-278,
Washington, D. C.

[4] Certification Authorities Software Team
(CAST), January 2000, Object-Oriented
Technology (OOT) in Civil Aviation Projects:
Certification Concerns, Position Paper CAST-4,
available at http://av-info.faa.gov/software/CAST/
cast-4.rtf. Visited on 29 July 2003.

[5] Certification Authorities Software Team
(CAST), January 2002, Use of the C++
Programming Language, Position Paper CAST-8,
available at http://av-info.faa.gov/software/CAST/
cast-8.rtf. Visited on 29 July 2003.

[6] Aerospace Vehicle Systems Institute, 31
October 2001, Guide to the Certification of Systems
with Embedded Object-Oriented Software, version
1.2

[7] Basili, V., L. Briand and W. Melo, 1996, “How
Reuse Influences Productivity in Object-Oriented
Systems,” Communications of the ACM, vol. 39, no.
10, pp. 104-116.

[8] Wood, M, J. Daly, J. Miller, and M. Roper,
1999, “Multi-Method Research: An Empirical
Investigation of Object-Oriented Technology,” The
Journal of Systems and Software, no. 34, pp. 13-26.

[9] Peterson, Ivars, 1995, Fatal Defect: Chasing
Killer Computer Bugs. Random House, Inc., New
York

[10] Vessey, Iris, and Sue A. Conger, May 1994,
“Requirements Specification: Learning Object,
Process, and Data Methodologies,”
Communications of the ACM, vol. 37, no. 5, pp.
102-113.

[11] Jackson, M., 1983, System Development,
Prentice-Hall, Englewood Cliffs, New Jersey.

[12] Moynihan, Tony, 1996, “An Experimental
Comparison of Object-Orientation and Functional-
Decomposition as Paradigms for Communicating
System Functionality to Users,” The Journal of
Systems and Software, vol. 33, pp. 163-169.

[13] Campbell, Donald T., Julian C. Stanley, 1963,
Experimental and Quasi-experimental Designs for
Research, Houghton Mifflin Company, Hopewell,
New Jersey.

[14] Briand, L., E. Arisholm, S. Counsell, F.
Houdek, and P. Thévenod-Fosse, 1999, “Empirical
Studies of Object-Oriented Artifacts, Methods, and
Processes: State of the Art and Future Directions,”
Technical Report ISERN-99-12.

[15] Object Management Group, March 2003,
OMG Unified Modeling Language Specification,
Version 1.5, formal/03-03-01.

[16] FAA Aircraft Certification Service, June 1998,
Conducting Software Reviews Prior to
Certification, Job Aid, available at http://av-
info.faa.gov/software/Job_Aids/jobaid.rtf. Visited
on 29 July 2003.

[17] Rierson, Leanna K., 27 March 2003, FAA’s
Next Steps for OOTiA, presented at the Object
Oriented Technology in Aviation Workshop 2,
available at http://shemesh.larc.nasa.gov/foot/next-
steps-end.ppt. Visited on 29 July 2003.

[18] Hayhurst, Kelly J; Cheryl Dorsey; John
Knight, Nancy Leveson, G. Frank McCormick,
August 1999, Streamlining Software Aspects of
Certification: Report on the SSAC Survey,
NASA/TM-1999-209519.

[19] Hayhurst, Kelly J., C. Michael Holloway, 27-
29 November 2001, “Challenges in Software
Aspects of Aviation Systems,” Proceedings of the
26th Annual NASA Goddard Software Engineering
Workshop, Greenbelt, MD, pp. 7-13.

[20] Hanks, Kimberly S., John C. Knight, Elisabeth
A. Strunk, 27-29 November 2001, “Erroneous
Requirements: A Linguistic Basis for Their
Occurrence and an Approach to Their Reduction,”
Proceedings of the 26th Annual NASA Goddard
Software Engineering Workshop, Greenbelt, MD,
pp. 115-119.

[21] Alexander, Roger T., September/ October
2001, “Improving the Quality of Object-Oriented
Programs,” IEEE Software, pp. 90-91.

[22] Offutt, Jeff, Roger Alexander, Ye Wu,
Quansheng Xiao, Chuck Hutchinson, November
2001, “A Fault Model for Subtype Inheritance and
Polymorphism,” The 12th IEEE International

Symposium on Software Reliability Engineering,
Hong Kong, PRC, pp. 84–95.

[23] Leveson, Nancy, 2002, “Re: object-orientation
vs. safety-critical” in Safety-Critical Mailing List,
archived at http://www.cs.york.ac.uk/hise/safety-
critical-archive/2002/0203.html. Visited on 28 July
2003.

